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Abstract

The sink strength for three-dimensionally (3D) versus one-dimensionally (1D), or mixed 1D/3D, migrating defects in
irradiated materials has attracted much attention in the recent past, because many experimental observations cannot be
interpreted unless 1D or mixed 1D/3D migration patterns are assumed for self-interstitial atom clusters produced in
cascades during irradiation. Analytical expressions for the sink strengths for defects migrating in 3D and also in 1D have
been therefore developed and a ‘master curve’ approach has been proposed to describe the transition from purely 1D to
purely 3D defect migration. Object kinetic Monte Carlo (OKMC) methods have subsequently been used to corroborate the
theoretical expressions but, although good agreement was generally found, the ability of this technique to reach the 1D
migration limit has been questioned, the limited size of the simulation box used in OKMC studies having been mainly
blamed for the inadequacies of the model. In the present work, we explore the capability of OKMC to reproduce the sink
strengths of spherical absorbers in a wide range of volume fractions, together with the sink strength of grain boundaries,
for defects characterised by different migration dimensionality, from fully 3D to pure 1D. We show that this technique is
not only capable of reproducing the theoretical expressions for the sink strengths in the whole range of conditions
explored, but is also sensitive enough to reveal the necessity of correcting the theoretical expressions for large sink volume
fractions. We thereby demonstrate that, in spite of the limited size of the OKMC simulation box, the method is suitable to
describe the microstructure evolution of irradiated materials for any defect migration pattern, including fully 1D migrating
defects, as well as to allow for the effect of extended microstructural features, much larger than the simulation box, such as
grain boundaries.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The kinetic Monte Carlo (KMC) method pro-
vides solutions to the master equations of a physical
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system whose evolution is governed by a known set
of transition rates between possible states, by choos-
ing randomly among various possible transitions
and accepting them on the basis of appropriate
probabilities [1]. When applied to study the evolu-
tion of systems of mobile species, such as atoms
(atomistic KMC, AKMC) [2–4] or defects formed
under irradiation (object KMC, OKMC) [5–7] it
.
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has the advantage of going beyond the mean-field
approximation, by explicitly and spontaneously
taking into account spatial correlations between
the elements of the physical system. As such,
KMC methods are expected to implicitly reproduce,
among other phenomena, the effect of sinks or traps
for migrating species, characterised by a given
geometry and spatial distribution, i.e. these methods
are expected to provide spontaneously the sink
strengths typically used in the rate theory to
describe the interaction of migrating defects with
the features characterising the microstructure of
the material (e.g. voids, dislocations, grain bound-
aries, . . .) [8–11].

The sink strength of each type of microstructural
feature, k2, is proportional to the square of the
inverse of the mean distance covered by the migrat-
ing species before interacting with it, in general by
being absorbed or trapped. The sink strength is a
priori a function not only of the type, shape, orienta-
tion, size and concentration of the sinks, as well as,
in principle, of the features of the actual interaction,
but also, and sometimes crucially, of the dimension-
ality of the motion of the affected migrating species.
In particular, the sink strength for three-dimension-
ally (3D) versus one-dimensionally (1D), or mixed
1D/3D migrating defects has attracted a lot of atten-
tion in the past decade, as a consequence of the fact
that a number of experimental observations con-
cerning irradiated materials under cascade damage
conditions cannot be interpreted unless 1D or mixed
1D/3D migration patterns are assumed for self-
interstitial atom clusters [12–14], which are by now
well known to be produced directly in displacement
cascades [15–17]. These types of migration patterns
have been amply confirmed by a number of mole-
cular dynamics simulation studies in a-Fe and Cu
[18,19]. Thus, analytical expressions for the sink
strengths for defects migrating not only in 3D [11],
but also in 1D [20], have been developed for use in
rate equation models of microstructure evolution
under irradiation [13,14]. In addition, a ‘master
curve’ approach has been proposed to describe the
transition of the sink strength from purely 1D to
purely 3D defect migration, as a function of the
frequency of change of 1D motion direction [21].
OKMC methods have subsequently been used to
corroborate the theoretical expressions [22–24].
Although in general good agreement has been found
between analytical theory and simulation, in the
cited work it has been pointed out that the OKMC
methods are only of limited applicability to verify
sink strength values. More specifically, the ability
of this technique to reach the sink strength 1D
migration limit has been questioned [25,24] and also
apparent discrepancies between theory and simula-
tion in the case of 3D migrating defects have
remained unexplained [22]. The necessarily limited
size of the simulation box used in OKMC studies
has been mainly blamed for these inadequacies.

In the present work, we explore the capability of
the OKMC technique to reproduce the sink
strengths of spherical, unsaturable absorbers in a
large range of volume fractions, as well as the sink
strength of grain boundaries, for defects characte-
rised by a varying motion dimensionality, from
the fully 3D limit to the pure 1D limit. We show that
this technique is not only capable of reproducing the
theoretical expressions for the sink strengths in the
whole range of conditions explored, but is also
sensitive enough to reveal the necessity of appropri-
ately correcting the theoretical expressions for large
sink volume fractions. We thereby demonstrate
that, in spite of the limited size of the OKMC
simulation box, the method is indeed suitable to
solve the equations governing the microstructure
evolution of irradiated materials for any defect
migration pattern, including fully 1D migrating
defects, as well as to allow for the effect of extended
microstructural features, much larger than the simu-
lation box, such as grain boundaries. In Section 2 the
computational method is described in detail. In Sec-
tion 3 our results are presented, distinguishing
between the cases of spherical absorbers for 3D,
1D and mixed 1D/3D migrating defects and grain
boundaries. In Section 4 the capability of the OKMC
technique to reliably evaluate sink strengths is dis-
cussed in the light of present and previous work.
The main conclusions are summarised in Section 5.

2. Computational method

The general features of the OKMC code used in
the present work, LAKIMOCA, have been exten-
sively described in a previous publication [7].
Briefly, the model treats radiation produced defects
(vacancies, self-interstitials atoms – SIA – and clus-
ters thereof) as objects with specific positions in a
simulation box and with associated reaction vol-
umes. Each object can migrate and participate in a
series of predefined reactions. The probabilities for
physical transition mechanisms, which are basically
migration jumps and emission from larger defects or
from traps, are calculated in terms of Arrhenius
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frequencies for thermally activated events, Ci ¼
mi exp Ea;i

kBT

� �
, where mi is the attempt frequency

(prefactor) for event i, Ea,i is the corresponding acti-
vation energy, kB is Boltzmann’s constant and T is
the absolute temperature. The Monte Carlo algo-
rithm [26] is used to select at each step the event that
is going to take place, based on the corresponding
probabilities, by extracting random numbers. After
a certain event is chosen, time is increased according

to the residence time algorithm, Ds ¼ 1=
PN th

e
i¼1CiþPN ext

e
j¼1 P j [27], where Pj are the probabilities of exter-

nal events, such as the appearance of a cascade or of
isolated Frenkel pairs produced by impinging parti-
cles. The choice of this expression is in the long term
equivalent to choosing Ds 0 = �lnR Æ Ds, where R is
a random number between 0 and 1 [28]. In addition,
the model includes non-thermally activated events,
such as the annihilation of a defect after encounter-
ing either a defect of opposite nature (i.e. a SIA
encountering a vacancy) or a sink, as well aggrega-
tion, either by adding a point-defect to a cluster or
by forming a complex between a defect and a trap
for it. These events occur only on the basis of geo-
metrical considerations (overlap of reaction vol-
umes) and do not participate in defining the
progressing of time. The possibility of introducing
different classes of immobile traps and sinks, char-
acterised by specific geometrical shapes (spheres,
infinite cylinders, surfaces, . . .) and suitable to mimic
voids or other trapping nano-features, as well as
dislocations and grain boundaries, is also imple-
mented. The code is therefore equipped to mimic
realistic microstructures and irradiation conditions.

In the present work, however, the model is used
to explore only idealised situations, as was done
by Heinisch and co-workers [22,24], where only
one migrating defect at a time is present in the sim-
ulation box, in a microstructure defined by only one
or at the most two classes of sinks of precise geo-
metry. The trajectory of the defect is followed until
it is absorbed by a sink and at that point a new
defect of the same type is introduced in the simula-
tion box. The sink strength is obtained in this way
as

k2 ¼ 2n

d2
j hnji

; ð1Þ

where hnji is the average number of jumps per-
formed by the defects, introduced one by one in
the box, before being annihilated at the sink; n is
the dimensionality of the motion and dj is the jump
distance. Since the defects are assumed to migrate in
a body centered cubic (bcc) lattice, dj =

p
3/2a0,

where a0 is the lattice parameter (in practice, the
value for a-Fe has been used, i.e. a0 = 0.287 nm).
Note that, following the rate theory, the choice of
n is not necessarily related to the actual dimension-
ality of the motion of the concerned defect, but
rather to the choice of using, in the rate equations,
the 3D or the 1D diffusion coefficient (D3 or D1)
in the term reproducing the rate of annihilation at
sinks, Dck2, where c is the defect concentration
[12,14,20]. Since in the present work the whole range
of motion dimensionality, from 3D to 1D, is
explored, in order to highlight the transition we
make the consistent choice of using in all cases the
3D diffusion coefficient, i.e. throughout the paper
n = 3 (unless otherwise stated). The histories of at
least 1000 defects have been tracked for each condi-
tion in order to obtain the average hnji that appears
in Eq. (1) and in most cases (all cases concerning 3D
migrating defects and many concerning 1D migrat-
ing defects) the number was as high as 10000, or
even more. In addition, it was always verified that
the value had actually converged, i.e. that the aver-
age did not change significantly by increasing the
number of followed defect histories. If this did not
happen, the simulation was rejected and repeated
with a larger number of sampled defects.

The dimensionality of the motion of the simu-
lated defects has been defined in two ways. One
way consisted in deciding that the defect must
change direction of motion after a fixed number of
jumps n0

j , i.e. after having travelled a mean length
lch ¼ dj

p
n0

j . If n0
j ¼ 1 the migration is fully 3D;

the larger n0
j , the closer the path becomes to being

1D. This is roughly the same scheme as in [22,24].
The other way consists in assigning an energy of
rotation, Er, whereby the probability of changing
direction of motion is expressed as exp(Er/kBT).
With this definition, the change of direction is
simply another possible stochastic event managed
by the Monte Carlo algorithm. Thus, the number
of jumps executed by the defect before changing
direction is not always the same, but in average it
leads to a characteristic average segment length,
lch = dj

p
exp(Er/kBT). Er = 0 provides a fully 3D

path, while at the chosen simulation temperature
of 573 K, Er = 1 eV is enough to have a fully 1D
path. Intermediate values (0.3, 0.35, 0.4, 0.45, 0.6,
0.7 and 0.8 eV were considered) correspond to
mixed 1D/3D migration. Between each re-orienta-
tion, the defect moves along a h111i direction.
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Non-cubic boxes with periodic boundary conditions
(PBC) have been used for all calculations. The use
of non-cubic boxes was found instrumental in order
to simulate correctly the 1D migrating defects, as
discussed in Section 4.

In the case of the spherical absorbers, boxes of
300 · 350 · 400 lattice parameters, equivalent to a
volume of about 106 nm3 if the lattice parameter
of a-Fe is adopted, were used. The absorbers were
randomly distributed in the simulation box, but care
was taken to avoid overlap, in order to respect the
assumptions made concerning their geometry, size
and density. Their radius, R, was varied from 0.75
to 10.2 nm and their number density, N, from 1016

to 1.5 · 1017 cm�3, thereby spanning volume frac-
tions, fV, from 1.8 · 10�5 to 4.1 · 10�1. The defects
were introduced one by one in randomly selected
positions within the simulation volume and the
cases corresponding to defects created inside the
absorbers were automatically excluded from the cal-
culation of the average in Eq. (1).

The effect of the presence of spherical grain
boundaries was introduced by assigning to each
defect two positions: the relative position inside
the simulation box, s, and the absolute position
inside the grain, S. Two close-by defects in the
simulation box will have similar relative positions,
s1 and s2, but may have a priori completely different
absolute positions in the grain, S1 and S2. Each time
the defect crosses the box boundaries and PBC are
applied to its relative position, S is corrected in such
a way that the displacement of the defect to the
image box beside is accounted for. If S gets to lie
on the surface of the spherical grain, the defect
disappears. In this scheme, the box size is totally
decoupled from the grain size and the effect of the
presence of large (spherical) grains can be allowed
for, even using small simulation boxes. In the pres-
ent case, boxes of 80 · 120 · 150 lattice parameters
(3.4 · 103 nm3) have been used and the grain size
has been increased from 30 nm (the radius of the
sphere enclosing the simulation box) to 1 lm and
beyond, in some cases also with the addition of
spherical absorbers in it.

3. Results

3.1. Spherical absorbers

According to theory, the sink strength of unsa-
turable spherical absorbers of radius R and density
N for 3D migrating defects, k2

3;s:a:, can be expressed
using the following, recursive expression (in defect
of a bias factor) [8,11]:

k2
3;s:a: ¼ 4pNR 1þ R

ffiffiffiffiffiffiffiffiffiffi
k2

3;s:a:

q� �
: ð2Þ

This expression is, however, customarily truncated
at the first order, k2

3;s:a: ¼ 4pNR. In the case of 1D
migrating defects, the expression for the sink
strength, k2

1;s:a:, is exact and is given by [20]

k2
1;s:a: ¼ 6ðpR2NÞ2: ð3Þ

(Always with the convention of using the 3D diffu-
sion coefficient, D3, in the equations, which explains
the factor 6 = 3 · 2 in front of the parenthesis.)
Given a defect that migrates following a path not
coinciding with either the 3D or the 1D limit, the
corresponding sink strength of spherical absorbers,
k2

1–3;s:a:, can be expressed as a function of the two
limiting case sink strengths and of the typical length
for change of direction, lch [21]. After defining two
dimensionless variables:

x2 ¼
l2

chk2
1;s:a:

12
þ

k4
1;s:a:

k4
3;s:a:

ð4aÞ

and

y ¼
k2

1–3;s:a:

k2
1;s:a:

; ð4bÞ

the master curve relating the general case to the
limiting cases is

y ¼ 1

2
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4

x2

� �s" #
: ð4cÞ

These expressions will be used to benchmark the
results of the simulation presented in the following
subsections. Throughout the section, the results
for the sink strengths will be represented in the
figures as functions of the absorbers’ volume frac-
tion, fV.

3.1.1. 3D migrating defects
Fig. 1 shows the cloud of simulation data points

in two different ways. In the upper panel the data
are grouped by absorber radii: points denoted by
the same symbol correspond to the same absorber
radius for growing absorber densities (1.0, 3.0, 6.0,
9.0, 12.0 and 15.0 · 1016 cm�3, the two highest den-
sities were not considered in the case of the largest
radius, though). In the lower panel, the simulation
data are compared to the values obtained using
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Fig. 1. Cloud of simulation data points for the sink strength of
3D migrating defects versus spherical absorber volume fraction.
Above: grouped by absorber radii (the lines are simply guides for
the eyes). Below: comparison with analytical expression (Eq. (2))
to first and second order.
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given in Eq. (2), in its second order approximation, versus
spherical absorber volume fraction.
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the first order approximation expression for the sink
strength from Eq. (2), k2

3;s:a: ¼ 4pNR, denoted by
small black dots, and also the second order approx-
imation, k2

3;s:a: ¼ 4pNRð1þ R
p

4pNRÞ, indicated by
crosses. Despite a small scatter on the data of
Fig. 1, due to statistical fluctuations, it appears
clearly that, in order for an agreement to be found
between simulation and theory for volume fractions
above 10�3 it becomes necessary to use the second
order approximation of the formula, as the first
order approximation largely underestimates the
actual sink strength. Above fV = 10�1 even the sec-
ond order approximation becomes insufficient and
more terms should probably be recursively added.
Fig. 2 suggests in a fairly clear way that this is
indeed the case: the relative error, defined as per-
centage ratio of the difference between simulation
and theory versus theory, using the second order
approximation as reference value, remains low in
absolute value and negative in sign for low fV, starts
growing in absolute value above fV = 10�2 and
above fV = 10�1 it even changes sign, becomes posi-
tive and grows very rapidly. The latter is clearly the
consequence of the need for an additional correc-
tion in order to obtain agreement between theory
and simulation data.
3.1.2. 1D migrating defects

Fig. 3 is the equivalent of Fig. 1 for 1D migrating
defects. In the upper panel the simulation data
points grouped by absorber radii are shown; in the
lower one the same points are compared with the
result of using Eq. (3). The equation is used to
extend the data points to the whole range of volume
fractions that was explored in the 3D case. As a
matter of fact, it is impossible to produce statisti-
cally reliable results for 1D migrating defects when
only very few small absorbers are present, for
computing time reasons. Even after more than
1012 Monte Carlo time steps (corresponding to
months of calculations on the used cluster of
PCs), for volume fractions less than 10�3 the num-
ber of followed defect histories remained below
1000 and the sink strength value could be hardly
said to have converged.

This is a direct consequence of the quadratic
dependence of k2

1;s:a: on the NR2 product (Eq. (3)),
to be compared with the 1st approximation linear
dependence on NR in the 3D case (Eq. (1)), which
makes the probability for the defect to encounter
absorbers along its 1D path negligibly small for
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small values of NR, compared to a 3D migrating
defect, as is also intuitive to imagine. By comparing
the lower panel of Fig. 3 with the corresponding
panel in Fig. 1 it can be seen that, for the same small
volume fraction (�10�5), the absorber sink
strengths for 3D migrating defects remains close
to 10�4, while it drops to 10�9 in the 1D case! The
unlikelihood of encountering sinks along their path
is, on the other hand, exactly the distinctive feature
of 1D migrating defects, which defines their specific-
ity and allows, trough the postulation of their exis-
tence, a number of experimental facts concerning
microstructure evolution under irradiation to be
understood [12,14].

This is also the reason why in general, and not
only for small volume fractions, it is more difficult
to obtain, by simulation of 1D migrating defects,
sink strength results that converge to an average
within a narrow enough range of fluctuations. This
explains why the simulation data points in Fig. 3 are
more scattered and less precise than in the 3D case.
Fig. 4 shows the ‘correction’ factor that should be
applied to the theoretical values from Eq. (3) in
order to provide the same value as the simulation.
This factor lies between 1 and 1.5 in most cases,
i.e. the simulation tends to overestimate the sink
strength value. This is the consequence of the fact
that, unless an unachievably large amount of defect
histories is followed, the statistics is always biased
towards higher sink strengths, since in the limited
time available to the simulation, if convergence is
reached, histories that ended with an early annihila-
tion in a sink will remain more likely to be sampled
than histories leading to late annihilation; so the
average will tend to be larger rather than smaller
than the theoretical value. Nonetheless, the overall
agreement is satisfactory, except for fV > 10�1,
where an increase of this correction factor is regis-
tered. Since, however, the increase of the volume
fraction is expected to improve, rather than worsen,
the statistical significance of the sampling done in
the simulation, the rapid increase of the correction
factor for large volume fractions cannot be ascribed
to lack of convergence. Two possible explanations
can be put forward. One is that, similarly to the
3D case, for large volume fractions Eq. (3) ceases
to be valid and corrections to it should be added.
The other is that the use of periodic boundary
conditions, in the case of many and large absorbers,



L. Malerba et al. / Journal of Nuclear Materials 360 (2007) 159–169 165
introduces a certain degree of order in the simula-
tion, which determines a departure from the theo-
retical expression, which is valid for randomly
distributed sinks.
3.1.3. Transition between 3D and 1D regime

In Fig. 5, the simulated sink strength of different
densities of spherical absorbers for defects that
change h111i direction after a fixed amount of
jumps, n0

j , is plotted versus lch, which is made to
vary between 1 and 100 000 nm. The absorber radius
was 6.25 nm in all cases. In the same figure also the
corresponding theoretical and simulation points for
the purely 1D case are shown for comparison. This
figure, which exemplifies the transition from 3D to
1D regime, should be compared with Fig. 2 in
[24]. It can be seen that, differently from the figure
in the cited work, in the present case the 1D limit
was reached to very good approximation for
lch = 10 lm and larger.

The same type of information, but in the master
curve representation [21], is given in Fig. 6, where
not only the points obtained from the simulations
at fixed number of jumps used in Fig. 5 are included,
but also those coming from simulations where the
change of h111i direction was decided based on
an energy of re-orientation, Er. In the latter case,
groups of points characterised by the same Er (and
therefore by the same lch) correspond to different
densities and radii, in the range specified above for
1D simulations. It is noteworthy that all points fulfil
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p
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j , where dj is the ju
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the condition embodied by the master curve, with
very little scatter only in the region of the transition
(change of slope of the curve) and then, as expected,
in the 1D region (where the curve remains constant).
This indirectly suggests that it is irrelevant, in prac-
tice, how the change of direction is imposed.

3.2. Grain boundaries

According to theory, the sink strength of a sphe-
rical grain boundary of radius Rg for 3D migrating
defects, k2

3;g:b:, is [10]

k2
3;g:b: ¼ 14:4=R2

g: ð5Þ

In the case of 1D migrating defects, the expression
for the sink strength, k2

1;g:b:, is also very similar [29]:

k2
1;g:b: ¼ 15=R2

g: ð6Þ

(With the convention of using the 3D diffusion
coefficient, D3, in the equations.) If other sinks are
present in the bulk, with sink strength k2

s:b:, the sink
strength of the grain boundary will be affected and
can be expressed, through the dimensionless
variables

a ¼ ks:b:Rg ð7aÞ

and

c ¼ k2
g:b:R

2
g; ð7bÞ

as
00.0 1000.0 10000.0 100000.0

ge of direction, l ch  (nm)

bsorber densities, as a function of the length of the 1D segments
mp distance and n0

j the fixed number of jumps before changing
from Eq. (3) are also indicated.
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Fig. 7. Sink strength of a spherical grain boundary as a function of its r
theoretical expressions, dots correspond to simulation results. The 1D
otherwise the two curves and dot series would have appeared superpos
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for the grain boundary sink strength, explicitly
derived in the case of 3D migrating defect (we are
not aware of any specific derivation of this curve
for 1D migrating defects). These expressions will
4.0 5.0 6.0 7.0

g (μm)

Theory 3D

Theory 1D

adius for both 3D and 1D migrating defects. Lines corresponds to
data have been divided by three for better legibility of the figure,
ed.



14

19

24

29

34

0 2 4 6 8
α

γ

Theory

lower density

intermediate density

higher density

Fig. 8. Relationship between the sink strength of a spherical grain boundary and the sink strength of bulk sinks in terms of the
dimensionless variables and master curve given in Eqs. (7). Three different spherical absorber densities (2.94, 5.88 and 8.81 · 1017 cm�3)
and a range of grain boundary radii (30 nm to 1 lm) have been considered.
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be used to benchmark the results of the simulation
presented in what follows.

Fig. 7 shows the sink strength of a spherical grain
boundary as a function of its radius. The curves
correspond to Eqs. (5) and (6), while the dots are
the results of the OKMC simulation. For better
legibility, in this figure the curve and dots for the
1D limit have been divided by three (thereby imply-
ing the use of a 1D diffusion coefficient, D1, in the
corresponding rate equations). The agreement
between simulation and theory is self-evident.

The effect of the simultaneous presence of bulk
sinks and grain boundaries has been explored by
considering three densities of 3 nm radius absorbers,
namely 2.94, 5.88 and 8.81 · 1017 cm�3. 3D migrat-
ing defects have been introduced one by one and the
grain boundary radius has been made to vary
between 30 nm and 1 lm. The simulation results
are plotted in Fig. 8 in terms of the dimensionless
variables defined in (7a) and (7b) and compared
with the ‘master curve’ given by Eq. (7c). Although
the simulation results systematically lie slightly
below the theoretical curve, the agreement is never-
theless remarkable.

4. Discussion

The results we have presented lead to a series of
important statements. First, the OKMC technique,
in spite of its inherently stochastic and discrete
nature, can trustfully describe the strength of sinks
of given geometry, size and density in a large range
of sink volume fractions, in full agreement with the-
oretical expressions obtained in the framework of a
mean-field, continuum approach. Second, in spite of
the finiteness and relatively small size of the simula-
tion box, this technique is capable of treating in a
reasonably correct way also 1D migrating defects,
whose path is orders of magnitude longer than the
typical size of the box (provided that a non-cubic
box is used, as will be shortly discussed). Third, also
extended sinks much larger than the size of the
OKMC simulation box can be correctly described
by this technique. None of these statements could
be obviously deduced from the existing literature
on the subject.

In [22], the sink strength of spherical absorbers of
growing radius for 3D migrating defects was found
to diverge from the linear behaviour provided
by the first order approximation of Eq. (2), and
the authors fitted their results to a third degree poly-
nomial. However no clear reason was provided for
this discrepancy. We have shown that both our sim-
ulation results and those in [22] are consistent with
the theoretical expression, provided that the latter
is extended to further orders of approximation.

In [25], the conclusion of a kinetic Monte Carlo
study of damage accumulation in metals under cas-
cade irradiation conditions was that the applicability
of such a technique was limited to cases where 1D
diffusing defects have no consequential role on the
microstructure evolution. Such a conclusion was
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Fig. 9. Pictorial explanation (in 2D) of why the use of non-cubic
boxes with PBC allows the simulation of 1D migration paths of a
priori any length, while cubic boxes with PBC lead to unrealistic
situations (the grey one is the simulation box, the others are the
image boxes according to PBC). Above, path A is doomed to see
the defect migrating along it to be immediately absorbed by the
sink located on it, while along path B the defect can migrate
indefinitely without ever encountering a sink. Below, because the
migration direction remains unchanged, by stretching the same
box to a non-cubic shape it becomes possible for the defect to
migrate through many image boxes before being absorbed by a
sink.
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reached on the basis of the fact that the application of
PBC seemed to produce a situation where the length
of the path of 1D diffusing defects was not limited by
the distance between sinks, but rather by events such
as recombinations, which are the more frequent, the
higher the dose; different results were obtained when
applying a mean-field approach. On the other hand,
the application of pseudo-periodic boundary condi-
tions was shown to inherently destroy the one-
dimensionality of the motion and was therefore
rejected as a solution. In the course of the present
work we have clearly observed that, if a cubic box
is used, only two situations can be encountered in
the case of 1D migrating defects with PBC: either
no sink is located along their path, so that the defect
can only indefinitely cross the simulation box with-
out ever being absorbed; or a sink is indeed located
along the path of the defect, but in this case the length
travelled by the migrating object can only be of the
order of the size of the box. In these conditions, the
correct simulation of the absorption of 1D migrating
defects is indeed unfeasible. If, on the other hand,
non-cubic (i.e. parallelepipedic) boxes are used, then
the application of PBC naturally provides the possi-
bility for the defect to travel long distances without
being absorbed in a sink and, conversely, of finding
at some point a sink that can absorb it, even without
changing direction of motion. This is illustrated pic-
torially in Fig. 9 and essentially happens because not
only these defects move in 1D, but the possible direc-
tion of motion, h111i, is dictated by the crystallogra-
phy and does not change if the box shape changes.
Non-cubic boxes allow the defect to explore most
of the box, by repeatedly applying PBCs, thereby
changing the local landscape seen by the defect,
although of course in the long run a certain degree
of periodicity will appear. More generally, the key
point is to have boxes that change dimension in
directions that are not parallel to the fixed 1D motion
direction. In [25], cubic boxes were used and we
believe that this may have been the origin of the
discrepancies from the mean-field approach found
in that work. It remains nonetheless true that the
OKMC simulation of 1D migrating defects requires,
in order to be reliable, very long computing time, so
as to produce a statistically representative sample of
defect histories. To this regard, a point that remain to
be clarified is the growing discrepancy between
theory and simulation in the case of 1D migrating
defects for large sink volume fractions, which may
be due to the fast establishment of a certain periodic-
ity and therefore order or simply to the inadequacy
of the theoretical expression in that range of volume
fractions.

Finally, in the present work we have shown that
by assigning parallel coordinates to defects, i.e.
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absolute coordinates inside a grain and relative
coordinates inside the simulation box, the effect of
extended defects such as grain boundaries can be
allowed for even with a relatively small simulation
box. The same approach can in principle be applied
for other types of extended defects, a priori also
with non-spherical shapes.

5. Conclusions

We have demonstrated that the OKMC tech-
nique naturally lends itself for the simulation of
processes leading to radiation produced defect
absorption at sinks, in the whole range of defect
migration patterns, from fully 3D to purely 1D,
and including the case of extended sinks much
larger than the simulation box itself. In the present
work we have dealt with sinks characterised by a
well defined geometry and for which analytical
expressions exist, so as to be able to prove the capa-
bility of the simulation model to provide correct
results by comparison with those expressions. It is
however believed that this simulation technique is
suitable to provide correct results for, a priori, any
sink type, shape and orientation, as well as in a large
range of sink volume fractions, thereby going
beyond the possibilities of mean-field theoretical
approaches. The main exception is given by those
cases where the sink volume fraction is very small,
in which the production of statistically meaningful
samples of defect histories may be difficult to
achieve. In those cases only analytical expressions
become applicable in practice.
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